
ABSTRACT 

This study proposes an Artificial Neural Network (ANN) 
algorithm for downscaling weather forecasts of some 
variables useful for agriculture in Southern Italy. Using the 
Weather Research and Forecasting (WRF) model at 1.2 km 
spatial resolution, the algorithm performs downscaling at 240 
m resolution using an operation similar to bilinear 
interpolation, but with enhanced performance. To train the 
ANNs, a database was built using the WRF model in Large 
Eddy Simulation (LES) mode with 240 m grid spacing. 
Particular attention was paid to defining the architecture of 
the ANNs and selecting the inputs. The comparison of the 
algorithm’s performance against spline interpolation shows a 
reduction of the mean squared error (MSE) ranging from a 
minimum of 6% for solar irradiance to a maximum of 87% 
for surface pressure. 
 

Index Terms — Precision agriculture; Precision farm; 
Smart agriculture; WRF; downscaling.  

 

1. INTRODUCTION 

Precision agriculture can be defined as a management 
strategy that aims for increased profitability, sustainability, 
and product quality using modern technologies to support 
decision-making processes [1]. In this context, weather 
forecasts provide valuable support by allowing for the 
planning of various operations such as sowing, weed control, 
pruning, or harvesting. They facilitate the rationalization of 
resources such as water, energy, or fertilizers and enable the 
prevention and timely response to issues such as drought, 
disease development, or insect infestation [2]. Weather 
forecasts can also be used as inputs for agro-meteorological 
models, allowing for detailed predictions of weather-related 
impacts on crops. To support precision agriculture, weather 
forecasts should be accurate and precise with high spatial 
resolutions. However, numerical weather prediction (NWP) 
models are subject to limitations imposed by high 
computational costs that significantly increase with the grid 
spacing used for forecasting decreases. To overcome this 
limitation, many studies have been conducted in recent years 
aimed at downscaling meteorological fields to support 
agriculture [3, 4]. The aim of this study is to describe the 

development of an Artificial Neural Network (ANN)-based 
algorithm for downscaling the meteorological fields 
forecasted by the Weather Research and Forecasting (WRF) 
model over an area of approximately (480 x 380) km2 in 
Southern Italy. The WRF model is a mesoscale NWP system 
widely used for both operational and research purposes. It 
was developed since the end of the last century through 
collaboration among various research institutes coordinated 
by the National Center for Atmospheric Research (NCAR). 
The ANN-based algorithm mainly uses as input the WRF 
output calculated on a 1.2 km regular grid and outputs the 
following fields on a 240 m regular grid: (i) 2-meter 
temperature (T2), (ii) 2-meter water vapor (Q2), (iii) 
accumulated 1-hourly precipitation (RAIN), (iv) surface 
pressure (PSFC), (v) global horizontal solar irradiance 
(SWD), (vi) 10-meter zonal wind component (U10) and (vii) 
10-meter meridional wind component (V10).  
 

2. MATERIALS AND METHODS 

The core of the algorithm consists of 7 different ANNs, one 
for each of the 7 meteorological fields previously listed. 
These ANNs are trained with a database of high spatial 
resolution simulations developed using the WRF model in 
Large Eddy Simulation (LES) mode [5]. The model outputs 
the meteorological fields on three nested domains with grid 
spacing of 3.6 km, 1.2 km and 240 m. Once the networks have 
been trained, they can be applied to the output of the 
operational WRF model at 240 m to downscale its output 
from the coarser resolution to the finer one. 
 
2.1. Artificial neural network 

An ANN is a computational model inspired by biological 
neural networks that can approximate any complex and non-
linear function to any desired degree of accuracy [6]. The 
structure consists of an input layer, one or more hidden layers 
consisting of a certain number of neurons and an output layer. 
The ANNs used in this study are of the feedforward type, i.e. 
with the information proceeding forward from the input layer 
to the output one, and fully-connected, i.e. with all inputs or 
neurons connected to all the neurons in subsequent layers. 
The neuron is the elementary unit whose output is calculated 
by multiplying its inputs with suitable weights and added 
together, with the subsequent addition of a bias and the final 
application of a suitable transfer function. Two training 
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algorithms were used for the weights and biases estimation, 
the Resilient Backpropagation [7] and the Levenberg-
Marquardt [8, 9]. The former is a first-order method that 
requires low computational cost, and it was therefore used for 
determining the number of neurons in the hidden layers and 
input selection. The latter is a second-order method with 
higher computational costs, but which generally produces 
better results, and it was therefore used for the final training 
of the ANNs. 
 
2.2. WRF-LES model 

The training database was built on the basis of 12 WRF-LES 
30-hour simulations: the first 6 were discarded for model 
spin-up, corresponding to 12 days of 2017, i.e. one for each 
month of the year. The simulations were conducted on three 
nested domains, with grid spacing of 3.6 km, 1.2 km, and 240 
m. For the initial and boundary conditions, the European 
Centre for Medium-Range Weather Forecasts (ECMWF) 
model at 0.125° latitude and longitude spatial resolution and 
6hour temporal resolution were used. The surface data of the 
two coarser domains are based on the Land Use/Land Cover 
(LULC) and Global Multi-resolution Terrain Elevation Data 
2010 (GMTED2010) with nominal spatial resolution of 30 
arc-seconds (about 900 m) and provided by the U.S. 
Geological Survey. For the domain at 240 m, the surface data 
are obtained from the Coordination of Information on the 
Environment (CORINE) LULC Programme with 3 arc-
seconds spatial resolution (about 90 m) and the Digital 
Elevation Model (DEM) of the Shuttle Radar Topography 
Mission (SRTM) with 1 arc-second (about 30m) spatial 
resolution. The main model settings are: (i) Thompson 
aerosol-aware microphysics; (ii) Rapid Radiative Transfer 
Model for Global Circulation Models (RRTMG) for 
shortwave and longwave radiation schemes; (iii) nonlocal 
Yonsei University for planetary boundary layer (PBL); (iv) 
Noah Land Surface Model [10]. The choice of grid spacing at 
3.6 km, 1.2 km and 240 m takes into account both the 
constraint of the ratio 1:3 or 1:5 imposed by the WRF model 
between parent and child domains, and the need to avoid the 
range between 1 km and a few hundred meters, defined as 
“terra incognita”. This range of lengths is indeed comparable 
to those of the most energetic turbulent eddies, which are not 
accurately resolved by either the microscale LES formulation 
or the mesoscale 1D PBL scheme. 
 
2.3. ANN configuration and training 

2.3.1 Definition of the ANN input/output 
The basic idea for building the training database was to use 
the WRF fields at 1.2 km grid spacing as input and the WRF 
fields at 240 m as output. However, there are small 
differences in the meteorological fields in the overlapping 
areas of the two domains that go beyond the different grid 
spacing and do not allow using the fields on the two domains 
as input and output. To overcome this limit, the fields at 1.2 
km were simulated starting from those at 240 m, degrading 

their resolution and sampling them on the grid points of the 
domain at 1.2 km. More in detail, the 240 m input fields were 
convolved via an iterative procedure with a two-dimensional 
Gaussian kernel with axial symmetry, testing many Full 
Width at Half Maximum (FWHM).  For each iteration, the 
resulting blurred and sampled field was compared with the 
original field at 1.2 km, analyzing the spatial frequency by 
Fourier transform, and finally choosing the FWHM that 
minimizes the mean squared difference (MSD). Once the 
fields were built using this procedure, the following inputs 
were preliminarily considered: (i) the values of the field to be 
downscaled in a (5x5) pixel box at 1.2 km, (ii) the values of 
the remaining fields in a (3x3) pixel box at 1.2 km, and (iii) 
the values in a (7x7) pixel box at 240 m of the static surface 
data related to altitude, three angles necessary to define 
orientation of the unit vector normal to the surface, and 
surface roughness. Principal Component Analysis (PCA) was 
then applied to each input/output variable to eliminate the less 
significant ones. Using the 12 WRF simulations, two 
databases consisting of 105 and 106 input/output pairs, or 
training patterns, were created. The smallest database was 
used with the Resilient Backpropagation algorithm for the 
preliminary operations of architecture definition and input 
selection, while the largest database was used for the final 
ANN training using the Levenberg-Marquardt algorithm. 
Both databases were divided into three datasets in a 60:20:20 
ratio: (i) the Training dataset for the training operations, (ii) 
the Validation dataset for the tuning and optimization 
procedures, (iii) the Test dataset for performance assessment. 

2.3.2. Definition of the ANN architectures  
Although only one hidden layer would have been sufficient 
for the algorithm development, with linear transfer function 
for the output layer and tangent hyperbolic for the other ones, 
two hidden layers were preferred [11-13]. To define the 
number of neurons in each hidden layer, an iterative 
procedure was adopted. Starting with a single node in both 
hidden layers, for each iteration two different ANNs were 
configured adding a new neuron separately to the 1st and 2nd 
hidden layer, and subsequently trained and compared to each 
other in terms of Mean Square Error (MSE) calculated on the 
Validation dataset. The most performing ANN was chosen 
and the iterations repeated until the addition of further 
neurons no longer leads to a significant reduction in MSE. 

2.3.3 ANN input reduction  
Input selection is generally an important task in machine 
learning because it mitigates the risk of overfitting and 
reduces the computational cost of training [14]. To this aim, 
an iterative procedure was adopted to evaluate the importance 
of all inputs. In the first iteration each input was removed one-
by-one, the resulting ANN was consequently updated and its 
performances evaluated in terms of MSE on the Validation 
dataset. The input whose removal produced the lowest error 
was definitely removed and the procedure moved on to the 
next iteration. The process ended once the MSE exceeded its 
minimum value with a tolerance of 5%. Over half of the 250 



inputs initially considered were removed using this 
procedure. For each input removal, the weights of the 
resulting ANN were updated using the approach suggested in 
Castellano and Fanelli [15], based on the Conjugate Gradient 
method [16], thereby reducing the computational costs that 
would have otherwise been excessive. 
 

2.3.3 Final training of the ANNs  
Using the architectures and inputs selected as described in the 
previous sections, the ANNs were trained in their final 
version using the Levenberg-Marquardt algorithm with the 
largest database of 106 training patterns. 
 

3. RESULTS AND DISCUSSION 

Generally, the accuracy of the NWP models is closely related 
to a wide variety of configurations, parameters, and physical 
options, such as the number, extent, and resolution of the 
different domains and their nesting options, the surface 
model, initial and boundary conditions, and the 
parameterizations and schemes adopted for microphysics, 
convection, planetary boundary layer and radiation. For this 
reason, the performance of the proposed algorithm cannot be 

assessed by comparing the downscaling results with a 
different source of validation data, as usually done, because 
both the algorithm and the WRF model would be evaluated 
together without distinguishing their individual contribution. 
To overcome this limitation, downscaling results were 
compared with those obtained using common spatial 
interpolation methods such as nearest, linear, cubic, 
piecewise cubic [17], modified Akima piecewise cubic 
Hermite [18], and cubic spline [19]. Among the different 
interpolation methods, the cubic ones yield better results, 
very similar to each other, with a slightly better performance 
for the spline cubic interpolation, which was then used as a 
benchmark for a quick comparison with the developed 
algorithm. Figure 1 shows, as an example, the temperature at 
2 m above the ground for a WRF-LES simulation of 
15/03/2017, 12:00 UTC, not used for the ANN training, at 
both 240 m and 1.2 km (panels a and b), and the downscaled 
fields obtained by using the spline cubic interpolation and the 
ANN-based algorithm (panels c and d). Each panel also 
contains a zoom of the same detail, to better evaluate the 
different spatial resolutions. Table 1 shows the comparison 
results between the ANN-based algorithm and Spline 
interpolation, obtained using the independent Test dataset not 

 
Figure 1 - Temperature at 2 m above the ground for 15/03/2017, 12:00 UTC - (a) WRF-LES at 240 m; (b) WRF-LES at 
1.2 km; (c) Spline cubic interpolation at 240 m; (d) ANN-based algorithm at 240 m- 



used for training process. Overall, the proposed algorithm 
outperforms the interpolation method. The best results were 
obtained for surface pressure, followed by the horizontal 
wind components. The worst results were obtained for solar 
irradiance and precipitation, even if the results still showed a 
6% improvement compared to the interpolation. The quality 
of the results probably depends on how close the relationship 
between the downscaled field and the orography is, and 
consequently how the corresponding ANN was able to 
exploit the inputs at 240 m relating to static surface data.  

 

4. CONCLUSIONS 

In this study an ANN-based downscaling algorithm of 
weather forecasts useful for precision agriculture was 
proposed. The result is an operation similar to the usual 2-
dimensional interpolations but with better performance. 
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Fields 
RMSE ANN 

algorithm 
RMSE Spline 
interpolation 

Improvement 

 𝑇2 5.79·10-1 K 6.72·10-1 K 13.8% 

 𝑄2 4.47·10-4 kg/kg 5.15·10-4 kg/kg 13.2% 

 𝑃𝑆𝐹𝐶 12.0 hPa 1.61 hPa 86.6% 

 𝑆𝑊𝐷 1.05·102 W/m2 1.12·102 W/m2 6.2% 

 𝑅𝐴𝐼𝑁 2.03·10-1 mm 2.17·10-1 mm 6.5% 

 𝑈10 7.32·10-1 m/s 1.15 m/s 36.3% 

 𝑉10 6.97·10-1 m/s 1.08 m/s 35.5% 

Table 1 – Performance comparison between the ANN-based 
algorithm and Spline interpolation 


